Projecting “The Extended Mind:” Expanding Visual and Interactive Space for Remote Collaboration Experiences in Mobile Mixed Reality

Bektur Ryskeldiev
University of Tsukuba
Japan
bektour@slis.tsukuba.ac.jp

Yoichi Ochiai
University of Tsukuba
Japan
wizard@slis.tsukuba.ac.jp

ABSTRACT
This study investigates how pervasive mobile mixed reality telepresence can assist users in collaborative tasks, entertainment, and navigation, by expanding their visible and interactive space within a shared mixed reality environment. To address this issue, this work proposes and discusses the Spatial Livestream Composition (SLC) method that combines both directionalized live media streams and photospherical imagery in a single collaborative multiuser environment. The proposed method was implemented in three proof-of-concept applications, and two of them were validated in user studies. The preliminary results have shown decrease in mental workload, increase in spatial and situational awareness, as well as increase in user engagement in comparison with similar applications with regular, non mixed reality, interfaces. The rest of this paper discusses current and future applications of proposed method.

CCS CONCEPTS
• Human-centered computing → Ubiquitous and mobile computing systems and tools; User interface management systems;

KEYWORDS
Spatial Media, Mixed Reality, Social Media, Telepresence, Mobile Computing, Groupware, Crowdsourcing, Photospherical Imagery

ACM Reference Format:

1 INTRODUCTION
In “The Extended Mind,” Clark and Chalmers claim that humans use external objects and environments to aid and extend their cognitive functions [3]. Similarly, in the current age of social media, live streaming, and mixed reality interactions, one might argue that we are now adopting real and virtual remote objects and environments as tools that assist our cognition, projecting the extended minds even further outside of our immediate physical surroundings.

Such tools, however, are still rather primitive. For instance, most social and collaborative applications still use single-viewpoint, rectangular live video streaming as the main form of interaction, which limits users’ visible and interactive space (Figure 1). Therefore, this study aims to answer on the following questions: “How can we extend the visible and interactive space available to users?”, and “How can we take advantage of extended interactive space in social and collaborative contexts?” The main scientific contributions of this work include:

• Designing a method that extends users’ visible and interactive space through mobile mixed reality telepresence,

• Investigating the effects of the proposed approach in social and collaborative contexts, and

• Proposing a system for “outsourcing” of users’ cognitive workload to other users in collaborative applications.

2 BACKGROUND
According to the Cisco report published in 2017 [2], mobile users are the fastest growing group of people who experience and interact with video streaming applications. Therefore, in order to have a higher social relevance and impact, this research focuses mainly on mobile mixed reality telepresence systems, taking into consideration the available spatial information (internal and external tracking on mobile devices), and immediacy of mobile interactions.

Similar works can be divided into two categories: systems that focus on telepresence and co-presence experiences, and systems that focus on remote collaboration. In case with telepresence, this work bears resemblance to such projects as JackIn[8], PanoVC[11], and SharedSphere[9], and in case with collaboration this work is similar to “Social Panoramas,”[1] “World-Stabilized annotations,”[4] and Chili[7]. The limitations of presented works include reduced visible and interaction space due to locked-in viewpoints (viewers cannot freely explore a remote location, only seeing what is in streamer’s video feed) [4, 7], lack of real-time interactions[1], limited mobility due to semi-tethered (part-mobile, part-stationary) interface[8, 9], and inability to support more than two users simultaneously[1, 4, 7, 8, 11].

3 RESEARCH METHODOLOGY
Based on the observed limitations, we designed a media stream composition method that would allow users to: freely explore a remote location regardless of streamer’s viewpoint, share each other’s real-time viewpoints, and interact through audio, haptic feedback, and
realtime annotations. Named as Spatial Livestream Composition (SLC) method, the proposed approach takes advantage of mobile devices’ spatial data to create a collaborative mixed reality space. SLC method organizes both spatial and media information into two following categories (Figure 2). Spatial background that represents a generalized information source that provides a spatial context in which users can be placed (e.g. a photospherical image or a real-time spherical video stream from a remote location), and spatialized live media streams that represent a live media feed coming from a streaming user, spatially oriented within the mixed reality space.

In order to investigate the feasibility of SLC method, we developed a Unity-based framework that allows creating a mixed reality space from web-based photospherical imagery, with rotationally-oriented real-time video streams that represent connected users’ viewpoints. All users can interact through live audio and video sharing, as well as through 3D annotations in mixed reality space (Figure 7). The internal rotational tracking is handled through Google Cardboard SDK running in “handheld” (non-VR) mode, whereas network connectivity is implemented through Web Real-Time Communication (WebRTC) protocol, which allows unbounded number of connected users within a single collaborative session (Figure 3).

4 CURRENT RESULTS

The developed framework has been used in three proof-of-concept applications. In the first application [13] we have investigated whether SLC method could be beneficial in collaborative scenarios. We divided users into two groups: streamers (who were physically present in a remote location), and viewers (who were connected remotely). In the experiment we asked viewers to help streamers find an object within a remote location, and viewers (who were connected remotely). In the experiment we asked viewers to help streamers find an object within a remote location, and viewers (who were connected remotely). In the experiment we asked viewers to help streamers find an object within a remote location, and viewers (who were connected remotely). In the experiment we asked viewers to help streamers find an object within a remote location, and viewers (who were connected remotely). In the experiment we asked viewers to help streamers find an object within a remote location, and viewers (who were connected remotely). In the experiment we asked viewers to help streamers find an object within a remote location, and viewers (who were connected remotely). In the experiment we asked viewers to help streamers find an object within a remote location, and viewers (who were connected remotely). In the experiment we asked viewers to help streamers find an object within a remote location, and viewers (who were connected remotely). In the experiment we asked viewers to help streamers find an object within a remote location, and viewers (who were connected remotely). In the experiment we asked viewers to help streamers find an object within a remote location, and viewers (who were connected remotely). In the experiment we asked viewers to help streamers find an object within a remote location, and viewers (who were connected remotely). In the experiment we asked viewers to help streamers find an object within a remote location, and viewers (who were connected remotely). In the experiment we asked viewers to help streamers find an object within a remote location, and viewers (who were connected remotely). In the experiment we asked viewers to help streamers find an object within a remote location, and viewers (who were connected remotely). In the experiment we asked viewers to help streamers find an object within a remote location, and viewers (who were connected remotely). In the experiment we asked viewers to help streamers find an object within a remote location, and viewers (who were connected remotely). In the experiment we asked viewers to help streamers find an object within a remote location, and viewers (who were connected remotely). In the experiment we asked viewers to help streamers find an object within a remote location, and viewers (who were connected remotely). In the experiment we asked viewers to help streamers find an object within a remote location, and viewers (who were connected remotely). In the experiment we asked viewers to help streamers find an object within a remote location, and viewers (who were connected remotely). In the experiment we asked viewers to help streamers find an object within a remote location, and viewers (who were connected remotely). In the experiment we asked viewers to help streamers find an object within a remote location, and viewers (who were connected remotely). In the experiment we asked viewers to help streamers find an object within a remote location, and viewers (who were connected remotely). In the experiment we asked viewers to help streamers find an object within a remote location, and viewers (who were connected remotely). In the experiment we asked viewers to help streamers find an object within a remote location, and viewers (who were connected remotely). In the experiment we asked viewers to help streamers find an object within a remote location, and viewers (who were connected remotely). In the experiment we asked viewers to help streamers find an object within a remote location, and viewers (who were connected remotely). In the experiment we asked viewers to help streamers find an object within a remote location, and viewers (who were connected remotely). In the experiment we asked viewers to help streamers find an object within a remote location, and viewers (who were connected remotely). In the experiment we asked viewers to help streamers find an object within a remote location, and viewers (who were connected remotely). In the experiment we asked viewers to help streamers find an object within a remote location, and viewers (who were connected remotely). In the experiment we asked viewers to help streamers find an object within a remote location, and viewers (who were connected remotely). In the experiment we asked viewers to help streamers find an object within a remote location, and viewers (who were connected remotely). In the experiment we asked viewers to help streamers find an object within a remote location, and viewers (who were connected remotely). In the experiment we asked viewers to help streamers find an object within a remote location, and viewers (who were connected remotely). In the experiment we asked viewers to help streamers find an object within a remote location, and viewers (who were connected remotely).

In the second application [12, 14] we investigated whether SLC method would make video stream viewing experience engaging in social entertainment context (Figure 4,5,6). We have created an interface similar to Periscope1, a popular live streaming application, where only streamers can share their realtime video feed, whereas users could interact through audio and by placing “like” buttons within a mixed reality space. In the experiment we asked users to try watching and interacting with live video streams in our application and in Periscope, and answer a questionnaire based on [5]. We have found a statistically significant improvement (p < 0.05 via Wilcoxon’s Signed Rank Test) in questions on whether users enjoyed interacting with multiple video streams over an average score of 3, but we could not detect statistically significant improvements in questions on whether users preferred our application to Periscope.

5 ONGOING AND FUTURE WORK

In the third application we are currently exploring whether SLC-based applications could be used for “outsourcing” users’ cognitive workload in visual search or navigation tasks. The application aims to take advantage of the “instant community” phenomenon that occurs during live video streaming sessions [5]. In such case, the developed application asks connected users to help a streamer either navigate in a remote location, or find a certain object within a spherical photo or video stream. We are currently designing a blockchain-based reward system that would encourage viewers to help streamers in collaborative sessions similar to [10] based on the mixed reality content distribution system that we developed in [15]. In the near future we are planning to expand this application towards remote assistance in accessibility scenarios (for instance, helping visually-impaired users to navigate around locations, or remotely operating a wheelchair similar to [6]).

1https://www.pscp.tv/
REFERENCES